Simple Mechanics to Upright Horizontally Impacted Molars with Ramus Screws

Dr Shih-Yung Lin,1 Dr Chris Chang,2 W. Eugene Roberts3

1BOI Diplomate, 2Founder, Beethoven Orthodontic Center, Publisher, International Journal of Orthodontics & Implantology, 3Consultant, International Journal of Orthodontics & Implantology

INTRODUCTION

Impaction risk is greatest for mandibular and maxillary third molars, followed by maxillary canines and mandibular second molars.1 Depending on the sample, the prevalence of impacted second molars is up to 2.3%.2,3 The etiology of impaction may be ectopic position of the third molar, obstacles in the eruption path, and failure of the tooth eruption mechanism.4 This case report demonstrates simple mechanics for managing horizontally impacted second molars in ~4 months. Detailed, step by step procedures are reported.

CASE REPORT

A 27-year-old male presented with bilaterally deeply impacted lower second molars, and a mesially tipped lower left third molar. The other third molars were impacted (Figure 1).

TREATMENT PLAN OPTIONS

Upper Arch

1. No treatment is not a viable option because it fails to address the functional problems, and the impacted third molars may result in root resorption of the adjacent second molars, as well as cyst formation and/or referred pain.5

2. Extract the impacted third molars and align the second molars. It may be difficult to extract the third molars without damaging the second molars. Furthermore the extraction site may heal with a soft tissue defect on the distal of the second molars.

3. Remove the second molars and allow for spontaneous eruption of the third molars. After spontaneous eruption of the thirds molars, the buccal segments can be aligned

Figure 1: Pre-treatment panoramic radiograph (above) & occlusal intra-oral photographs (below) document the malocclusion.
with fixed appliances. Extraction of the erupted second molars presents less surgical risk than removing the impacted third molars.

Lower Arch

1. Remove all second and third molars, place a subperiosteal membrane for guided bone regeneration, and place implants to restore the second molars. The major concern with this option is the possibility of the inferior alveolar nerve injury during the extraction process, and healing of the surgical site is unpredictable.

2. Remove the impacted third molars, and then upright the second molars with elastic chains anchored by bone screws placed in the ramus, bilaterally.

After careful discussion of the options with the patient, the decision was made to extract the upper second molars and the lower third molars (Figure 2), and place bilateral ramus bone screws (Figure 3). Attachments were bonded on the distal surface of each second molar (Figure 4).

SURGICAL PROCEDURES

Under local anesthesia, bone screws (2x14mm stainless steel) were inserted in the ramus of the mandible bilaterally (Figure 4). Then, the upper second and lower third molars were extracted, followed by surgical exposure of the lower second molars. An explorer was used to locate the crowns of impactions. Teeth are smooth and hard, while bone is crunchy and irregular.

Bone superior to the lower second molar crowns was removed down to the level of the cementoenamel junction (CEJ) with a high-speed handpiece. The second molars were surgically luxated to rule out ankylosis. A button was bonded on the distal surface of the lower right second molar, and an eyelet was bonded on the left second molar (Figure 4).

Elastic chains, anchored by the bone screws, were activated by connecting the opposite end of chain to the attachments bonded on the second molars (Figure 5). A resin ball was applied to the bone screw head to prevent the elastic chains from being displaced (Figure 4). To control bleeding, the soft tissue wound was closed with interrupted sutures which were removed after one week. Four months later the second molars were uprighted successfully and routine brackets were bonded on the buccal surface at five months into treatment (Figure 5).

DISCUSSION

Deciding between extraction or uprighting for impacted teeth is a critical aspect of treatment planning. Factors affecting the decision are severity of the impaction, its position relative to critical anatomical structures (inferior alveolar nerve
Figure 5: On the left, a series of panoramic films document tooth positions immediately after surgery (0m), then at 1 (1m), 2 (2m), 4 (4m) and 5 months (5m) later. Corresponding drawings documenting the mechanics are shown on the right.
and lingual artery etc), pre-existing conditions of impacted teeth (caries, root dilaceration, periodontal health etc), and difficulty of the extraction surgery (Figure 6). If orthodontics is indicated, an efficient mechanics plan is required.

Many methods of uprighting molars have been proposed in the literature. The mechanical design presented here is simple, effective and expedient. There are two essential tips to ensure routine success with the proposed method.

Tips 1. Remove all obstructions to eruption, such as ectopic position of the dental follicle, teeth or pathology in the path of eruption, and failure of the tooth eruption mechanism. For the present patient, the suspected etiology involves the following (Figure 6):

a. Impacted third molar putting pressure on the second molar
b. Thick cortical bone blocking the eruption of the second molar
c. Ankylosis of the second molar, and/or
d. Ectopic eruption of the second molar to engage the undercut on the distal of the first molar.

For predictable uprighting and alignment of the second molars, all of the potential etiologic factors were addressed by extracting the third molars and gently luxating the second molars (Figure 7).

Tips 2. Design an efficient force system for uprighting the impacted teeth. Uprighting a deep horizontal impaction requires occlusal and distal components of force to unlock the impaction from its position against the first molar root. It is wise to avoid bonding a bracket on the first molar until the second molar is at least partially uprighted. This will allow the first molar to move out of the way to help avoid root resorption. Miniscrews can provide favorable anchorage without side effects on the dentition. The dense cortical bone in the ramus is a good site to insert the screw (Figure 7).

Furthermore, there are several considerations in selecting bonding devices and bonding sites. The most popular bondable attachments for uprighting molars are buttons or eyelets (Figure 8). An eyelet is more versatile, but it more difficult to use, compared to a button. In deciding between the two options, the first concern is the line of force. Buttons are well designed for horizontal traction (Figure 8), but elastic chains are more easily displaced as the direction of traction assumes a more vertical orientation. The second consideration is the convenience of placing and replacing the elastic chains. An eyelet is easily bonded on a tooth with the elastic attached, but a button is more convenient if the elastic must be changed (Table 1). If the attachment is bonded on the surface of the erupted tooth, and the angle of traction is appropriate (Figure 9), a button may be the preferred choice.
Simple Mechanics to Upright Horizontally Impacted Molars with Ramus Screws

Lin SY, Chang C, Roberts E: Simple Mechanics to Upright Horizontally Impacted Molars with Ramus Screws

However, if the attachment is bonded on the surface of an unerupted tooth, an eyelet is preferable because there is less chance that the elastic chain will come loose. Flowable resin can be polymerized to secure the elastic chain on either type of attachment. An additional determinant is the convenience when holding the device with a hemostat or pliers. A button has a smooth, rounded head so it is more difficult to hold. The flat surfaces of an eyelet are more amenable to holding the button for bonding or any other manipulation (Figure 10).

Why Ramus Screws?

An efficient, yet simple mechanism is required to upright deeply impacted or mesially tipped molars. Lin6 reviewed six different methods of molar uprighting, and concluded that surgical exposure of the deeply impacted molars, followed by fraction with elastic chains anchored by ramus screws, was the most efficient. The bone screw recommended is the same one developed for extra-alveolar anchorage in the maxilla and mandible [Figure 11].

Table 1: Bondable attachments, buttons and eyelets, are compared relative to clinical efficiency

<table>
<thead>
<tr>
<th></th>
<th>Button</th>
<th>Eyelet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Traction direction</td>
<td>Parallel/Slightly angular</td>
<td>Any direction</td>
</tr>
<tr>
<td>Replacing elastic</td>
<td>Simple and easy</td>
<td>More complex</td>
</tr>
<tr>
<td>Method of operation</td>
<td>Difficult</td>
<td>Easy</td>
</tr>
</tbody>
</table>

Why use 2 x 14 mm screws?

Previous studies have demonstrated that 2x12 mm extra-alveolar screws are appropriate for the mandibular buccal shelf area, because the soft tissue thickness is only about 1-3 mm.10,11 A 2x12 mm screw can usually provide adequate stability and soft tissue clearance when it is inserted in bone about 5 mm. A ramus screw must penetrate thick movable mucosa, as well as the inferior fibers of the temporalis muscle, so the 2x14 mm screw may be needed to provide adequate osseous stability and soft tissue clearance.

Controlling soft tissue inflammation in the anterior ramus area can be a challenge, and it can lead to screw failure. However, a preliminary study found a failure rate of only 5% for ramus screws, which is lower than for mandibular buccal shelf screws (7.2%).10,11 Therefore this simple mechanics design is highly recommend to upright impacted second and third molars.

Figure 8: Bondable button (above) and eyelet (below) attachments are fitted with elastic chains.

Figure 10: A button with an elastic chain attached (left) is difficult to hold securely. In contrast, the flat surfaces of an eyelet facilitate securely holding it with a hemostat.

Figure 9(a): Safe angle: when the elastic chains are attached at an obtuse angle there is a low probability that they will be displaced from the button.

Figure 9(b): Non-safe angle: when elastic chains are attached with an acute angle, there is a high probability that they will slip off the button during normal occlusal function.

Figure 11: A 2x14-mm stainless steel bone screw is designed to be inserted in the ramus as a self-drilling fixture.
CONCLUSION

Six impacted molars considerably compromised the occlusal function of a 27yr male. Upper second molars and lower third molars were extracted, bilaterally. Each horizontally impacted second molar was uprighted with a chain of elastics, attached to the distal surface of the tooth and anchored with a ramus bone screw.

(Republished with permission from the Author and from International Journal of Orthodontics & Implantology)

REFERENCES